1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
| import pandas as pd data = pd.read_csv("附件1:订单信息.csv")
def stringToNum(x): return int(x[1:]) OrderNo = list(map(stringToNum, data["OrderNo"])) ItemNo = list(map(stringToNum, data["ItemNo"])) OrderObject = [] index = 0 for i in range(0, 20340): if OrderNo[i] > index: OrderObject.append([]) index += 1 OrderObject[index-1].append(ItemNo[i])
OrderLen = [] for k,v in enumerate(OrderObject): OrderLen.append([k, len(v)]) OrderLen.sort(key=lambda item:item[1], reverse=True) def getFitness(i, j): item1 = OrderObject[OrderLen[i][0]] item2 = OrderObject[OrderLen[j][0]] tmp = set(item1) tmp.update(item2) return 1-(len(tmp)-len(item1))/len(item2) for i in range(len(OrderLen)-1): maxfitindex = i+1 maxfit = 0 for j in range(i+1, len(OrderLen)): fitness = getFitness(i, j) if fitness > maxfit: maxfitindex = j maxfit = fitness tmp = OrderLen[i+1] OrderLen[i+1] = OrderLen[maxfitindex] OrderLen[maxfitindex] = tmp len(OrderLen)
GroupNo = [] for orderInf in iter(OrderLen): overIndex = -1 overDelta = orderInf[1] overSet = set() product = set(OrderObject[orderInf[0]]) cache = set() for i, j in enumerate(GroupNo): cache = product.copy() cache.update(j[0]) if len(cache) > 200: continue if len(cache)-len(j[0])==0: overIndex = i overSet = cache break if len(cache)-len(j[0]) <= overDelta: overIndex = i overDelta = len(cache)-len(j[0]) overSet = cache continue if overIndex == -1: GroupNo.append([product, [orderInf[0]]]) else: GroupNo[overIndex][0] = overSet GroupNo[overIndex][1].append(orderInf[0]) print(len(GroupNo))
res1 = [] for k, v in enumerate(GroupNo): for i in iter(v[1]): res1.append([i+1,k+1]) len(res1)
def NumToStringD(x): return ["D{0:0>4}".format(x[0]), x[1]] res1.sort(key=lambda item: item[0]) result1 = list(map(NumToStringD, res1)) result1 = pd.DataFrame(result1, columns=['OrderNo','GroupNo']); result1.to_csv("result1.csv", index=False)
ProductOrderList = [] DistanceList = [] def sumDistance(TargetSort, NormOrder): sum = 0 for item in iter(NormOrder): if len(item) == 1: continue min, max = 0, len(TargetSort)-1 for k, v in enumerate(TargetSort): if v in item: min = k break for k, v in enumerate(reversed(TargetSort)): if v in item: max = len(TargetSort)-k-1 break sum += max-min return sum
for temp in GroupNo: N = len(temp[0]) NormOrder = [] ProductList = list(temp[0]) for k, v in enumerate(temp[1]): NormOrder.append([]) for i in iter(OrderObject[v]): NormOrder[k].append(ProductList.index(i)) TargetSort = list(range(0, N))
currentSum = sumDistance(TargetSort, NormOrder) for i in range(0, N): for j in range(i+1, N): tmp = TargetSort[j] TargetSort[j] = TargetSort[i] TargetSort[i] = tmp tmpSum = sumDistance(TargetSort, NormOrder) if tmpSum < currentSum: currentSum = tmpSum continue elif tmpSum == currentSum: if j-i < (N-i)/1: continue else: break else: tmp = TargetSort[j] TargetSort[j] = TargetSort[i] TargetSort[i] = tmp if j-i < (N-i)/1: continue else: break DistanceList.append(currentSum) ProductOrderList.append(list(map(lambda ind: ProductList[ind],TargetSort)))
res2 = [] for k, v in enumerate(ProductOrderList): for i, j in enumerate(v): res2.append([j, k+1, i+1]) print(len(res2)) sum(DistanceList)
def NumToStringP(x): return ["P{0:0>4}".format(x[0]), x[1], x[2]] result2 = list(map(NumToStringP, res2)) result2 = pd.DataFrame(result2, columns=['ItemNo','GroupNo','ShelfNo']); result2.to_csv("result2.csv", index=False)
TaskList = [] TimeList = [] def sumDeltaDistance(pos, Product, CurrentOrder): min, max = 0, len(Product)-1 for k, v in enumerate(Product): if v in CurrentOrder: min = k break for k, v in enumerate(reversed(Product)): if v in CurrentOrder: max = len(Product)-k-1 break if pos <= min: return max-min, max elif pos >= max: return max-min, min else: if pos - min < max - pos: return max-min+pos-min, max else: return max-min+max-pos, min
for indexNum in range(len(GroupNo)): TaskList.append([]) CurrentTask = [[],[],[],[],[]] CurrentPos = [0, 0, 0, 0, 0] CurrentSum = [0, 0, 0, 0, 0] temp = GroupNo[indexNum] tempProduct = ProductOrderList[indexNum] ProductList = list(temp[0]) for v in iter(temp[1]): minIndex = 0 minPos = 0 minSum = max(CurrentSum) + len(ProductList) for i in range(0,5): delta, tmpPos = sumDeltaDistance(CurrentPos[i], ProductList, OrderObject[v]) if CurrentSum[i]+delta < minSum: minSum = CurrentSum[i]+delta minIndex = i minPos = tmpPos CurrentTask[minIndex].append(v) CurrentPos[minIndex] = minPos CurrentSum[minIndex] = minSum TaskList[indexNum] = CurrentTask TimeList.append(max(CurrentSum))
res3 = [] for k, v in enumerate(TaskList): for i in range(0, 5): for tn, pi in enumerate(v[i]): res3.append([pi+1, k+1, i+1, tn+1]) print(len(res3)) sum(TimeList)
def NumToString(x): return ["D{0:0>4}".format(x[0]), x[1], x[2], x[3]] result3 = list(map(NumToString, res3)) result3 = pd.DataFrame(result3, columns=['OrderNo','GroupNo','WorkerNo', 'TaskNo']); result3.to_csv("result3.csv", index=False)
|